Hidden Markov Random Field and Frame Modelling for TCA Image Analysis
نویسندگان
چکیده
Tooth Cementum Annulation (TCA) is an age estimation method carried out on thin cross sections of the root of the human tooth. Age is computed by adding the tooth eruption age to the count of annual incremental lines which are called tooth rings and appear in the cementum band. Algorithms to denoise and segment the digital image of the tooth section are considered a crucial step towards computerassisted TCA. The approach in this paper relies on modelling the images as hidden Markov random fields, where gray values are assumed to be pixelwise conditionally independent and normally distributed, given a hidden random field of labels. These unknown labels have to be estimated to segment the image. To account for long-range dependence among the observed values and for periodicity in the placement of tooth rings, the Gibbsian label distribution is specified by a potential function that incorporates macrofeatures of the TCA image (a FRAME model). An estimation of the model parameters is made by an EM algorithm exploiting the mean field approximation of the label distribution. Segmentation is based on the predictive distribution of the labels given the observed gray values.
منابع مشابه
The FRAME Prior in Hidden Markov Random Field and Coupled Hidden Markov Modelling for TCA Image Analysis
Tooth Cementum Annulation (TCA) is an age estimation method carried out on thin cross sections of the root of the human tooth. Age is computed by adding the tooth eruption age to the count of annual incremental lines which are called tooth rings and appear in the cementum band. Algorithms to denoise and segment the digital image of the tooth section are considered a crucial step towards compute...
متن کاملGeneralised Mixture Estimation and Unsupervised Classification Based on Hidden Markov Chains and Hidden Markov Random Fields
Hidden Markov chain (HMC) models, applied to a HilbertPeano scan of the image, constitute a fast and robust alternative to hidden Markov random field (HMRF) models for spatial regularisation of image analysis problems, even though the latter provide a finer and more intuitive modelling of spatial relationships. In the framework of generalised mixture estimation and unsupervised classification o...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملINRIA Research Project Proposal mistis Modelling and Inference of Complex and Structured Stochastic Systems
5 Domains of research 10 5.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.1 Learning and classification techniques . . . . . . . . . . . . . . . . . . 11 5.1.2 Taking into account the curse of dimensionality. . . . . . . . . . . . 12 5.2 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.1 Triplet Markov Fields f...
متن کاملUnsupervised Image Segmentation using Tabu Search and Hidden Markov Random Field Model
We propose a Tabu search based Expectation Maximization (EM) algorithm for image segmentation in an unsupervised frame work. Hidden Markov Random Field (HMRF) model is used to model the images. The observed image is considered to be a realization of Gaussian Hidden Markov Random Field (GHMRF) model. The segmentation problem is formulated as a pixel labeling problem. The GHMRF model parameters a...
متن کامل